Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Cytometry A ; 2022 Mar 04.
Article in English | MEDLINE | ID: covidwho-20234770

ABSTRACT

We evaluated the number of CD26 expressing cells in peripheral blood of patients with COVID-19 within 72 h of admission and on day 4 and day 7 after enrollment. The majority of CD26 expressing cells were presented by CD3+ CD4+ lymphocytes. A low number of CD26 expressing cells were found to be associated with critical-severity COVID-19 disease. Conversely, increasing numbers of CD26 expressing T cells over the first week of standard treatment was associated with good outcomes. Clinically, the number of circulating CD26 cells might be a marker of recovery or the therapeutic efficacy of anti-COVID-19 treatment. New therapies aimed at preserving and increasing the level of CD26 expressing T cells may prove useful in the treatment of COVID-19 disease.

2.
Int J Oncol ; 62(3)2023 03.
Article in English | MEDLINE | ID: covidwho-2257647

ABSTRACT

The worldwide COVID­19 pandemic was brought on by a new coronavirus (SARS Cov­2). A marker/receptor called Dipeptidyl peptidase 4/CD26(DPP4/CD26) may be crucial in determining susceptibility to tumors and coronaviruses. However, the regulation of DPP4 in COVID­invaded cancer patients and its role on small molecule compounds remain unclear. The present study used the Human Protein Atlas, Monaco, and Schmiedel databases to analyze the expression of DPP4 in human tissues and immune cells. The association between DPP4 expression and survival in various tumor tissues was compared using GEPIA 2. The DNMIVD database was used to analyze the correlation between DPP4 expression and promoter methylation in various tumors. On the cBioPortal network, the frequency of DPP4 DNA mutations in various cancers was analyzed. The correlation between DPP4 expression and immunomodulators was analyzed by TISIDB database. The inhibitory effects of cordycepin (CD), N6, N6­dimethyladenosine (m62A) and adenosine (AD) on DPP4 in cancer cells were evaluated. DPP4 was mainly expressed in endocrine tissue, followed by gastrointestinal tract, female tissue (mainly in placenta), male tissue (mainly in prostate and seminal vesicle), proximal digestive tract, kidney, bladder, liver, gallbladder and respiratory system. In immune cells, DPP4 mRNA was mainly expressed in T cells, and its expression was upregulated in esophageal carcinoma, kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma, pancreatic adenocarcinoma, prostate adenocarcinoma, stomach adenocarcinoma, thyroid carcinoma and thymoma. However, it was downregulated in breast invasive carcinoma, kidney chromophobe, lung squamous cell carcinoma and skin cutaneous melanoma. Thus, DPP4 is involved in viral invasion in most types of cancer. The expression of DPP4 could be inhibited by CD, m62A and AD in different tumor cells. Moreover, CD significantly inhibited the formation of GFP­positive syncytial cells. In vivo experiments with AD injection further showed that AD significantly inhibited lymphocyte activating factor 3 expression. These drugs may have potential to treat COVID­19 by targeting DPP4. Thus, DPP4 may be medically significant for SARS­CoV­2­infected cancer patients, providing prospective novel targets and concepts for the creation of drugs against COVID­19.


Subject(s)
Adenocarcinoma , COVID-19 , Carcinoma, Hepatocellular , Liver Neoplasms , Melanoma , Pancreatic Neoplasms , Skin Neoplasms , Humans , Male , Female , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , SARS-CoV-2 , Adenosine , Pandemics , Prospective Studies , COVID-19/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Immunity
3.
Rev Neurosci ; 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-2239146

ABSTRACT

Dipeptidyl peptidase 4 is a serine protease that cleaves X-proline or X-alanine in the penultimate position. Natural substrates of the enzyme are glucagon-like peptide-1, glucagon inhibiting peptide, glucagon, neuropeptide Y, secretin, substance P, pituitary adenylate cyclase-activating polypeptide, endorphins, endomorphins, brain natriuretic peptide, beta-melanocyte stimulating hormone and amyloid peptides as well as some cytokines and chemokines. The enzyme is involved in the maintenance of blood glucose homeostasis and regulation of the immune system. It is expressed in many organs including the brain. DPP4 activity may be effectively depressed by DPP4 inhibitors. Apart from enzyme activity, DPP4 acts as a cell surface (co)receptor, associates with adeosine deaminase, interacts with extracellular matrix, and controls cell migration and differentiation. This review aims at revealing the impact of DPP4 and DPP4 inhibitors for several brain diseases (virus infections affecting the brain, tumours of the CNS, neurological and psychiatric disorders). Special emphasis is given to a possible involvement of DPP4 expressed in the brain.While prominent contributions of extracerebral DPP4 are evident for a majority of diseases discussed herein; a possible role of "brain" DPP4 is restricted to brain cancers and Alzheimer disease. For a number of diseases (Covid-19 infection, type 2 diabetes, Alzheimer disease, vascular dementia, Parkinson disease, Huntington disease, multiple sclerosis, stroke, and epilepsy), use of DPP4 inhibitors has been shown to have a disease-mitigating effect. However, these beneficial effects should mostly be attributed to the depression of "peripheral" DPP4, since currently used DPP4 inhibitors are not able to pass through the intact blood-brain barrier.

4.
Vaccines (Basel) ; 11(1)2023 Jan 13.
Article in English | MEDLINE | ID: covidwho-2200950

ABSTRACT

Coronaviruses interact with protein or carbohydrate receptors through their spike proteins to infect cells. Even if the known protein receptors for these viruses have no evolutionary relationships, they do share ontological commonalities that the virus might leverage to exacerbate the pathophysiology. ANPEP/CD13, DPP IV/CD26, and ACE2 are the three protein receptors that are known to be exploited by several human coronaviruses. These receptors are moonlighting enzymes involved in several physiological processes such as digestion, metabolism, and blood pressure regulation; moreover, the three proteins are expressed in kidney, intestine, endothelium, and other tissues/cell types. Here, we spot the commonalities between the three enzymes, the physiological functions of the enzymes are outlined, and how blocking either enzyme results in systemic deregulations and multi-organ failures via viral infection or therapeutic interventions is addressed. It can be difficult to pinpoint any coronavirus as the target when creating a medication to fight them, due to the multiple processes that receptors are linked to and their extensive expression.

5.
J Infect Public Health ; 15(11): 1315-1320, 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2069350

ABSTRACT

BACKGROUND: Middle East respiratory syndrome-coronavirus (MERS-CoV) utilizes CD26 (dipeptidyl peptidase-4) and CD66e or CEACAM5 (carcinoembryonic antigen-related cell adhesion molecule 5) receptors for cell infection. Peripheral blood mononuclear cells (PBMCs) play a critical role in mounting adaptive immune response against the virus. This study was performed to assess the expression of CD26 and CD66e on PBMCs and their susceptibility to MERS-CoV infection. METHODS: Surface expression of CD26 and CD66e receptors on PBMCs from MERS-CoV patients (n = 20) and healthy controls (n = 20) was assessed by flow cytometry and the soluble forms were determined by enzyme-linked immunosorbent assay (ELISA). MERS-CoV UpE and Orf1a genes in PBMCs were detected by using Altona diagnostics reverse transcription polymerase chain reaction (RT-PCR) kit. RESULTS: Mean fluorescent intensity (MFI) of CD66e was significantly higher on CD4 + lymphocytes (462.4 ± 64.35 vs 325.1 ± 19.69; p < 0.05) and CD8 + lymphocytes (533.8 ± 55.32 vs 392.4 ± 37.73; p < 0.04) from patients with MERS-CoV infection compared to the normal controls. No difference in MFI for CD66e was observed on monocytes (381.8 ± 40.34 vs 266.8 ± 20.6; p = 0.3) between the patients and controls. Soluble form of CD66e among MERS-CoV patients was also higher than the normal controls (mean= 338.7 ± 58.75 vs 160.7 ± 29.49 ng/mL; p < 0.01). Surface expression of CD26 on PBMCs and its soluble form were no different between the groups. MERS-CoV was detected by RT-PCR in 16/20 (80%) patients from whole blood, among them 8 patients were tested in PBMCs, 4/8 (50%) patients were positive. CONCLUSION: Increased expression levels of CD66e (CEACAM5) may contribute to increased susceptibility of PBMCs to MERS-CoV infection and disease progression.

6.
Biomedicines ; 10(8)2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-1997512

ABSTRACT

DPP4/CD26 is a single-pass transmembrane protein with multiple functions on glycemic control, cell migration and proliferation, and the immune system, among others. It has recently acquired an especial relevance due to the possibility to act as a receptor or co-receptor for SARS-CoV-2, as it has been already demonstrated for other coronaviruses. In this review, we analyze the evidence for the role of DPP4 on COVID-19 risk and clinical outcome, and its contribution to COVID-19 physiopathology. Due to the pathogenetic links between COVID-19 and diabetes mellitus and the hyperinflammatory response, with the hallmark cytokine storm developed very often during the disease, we dive deep into the functions of DPP4 on carbohydrate metabolism and immune system regulation. We show that the broad spectrum of functions regulated by DPP4 is performed both as a protease enzyme, as well as an interacting partner of other molecules on the cell surface. In addition, we provide an update of the DPP4 inhibitors approved by the EMA and/or the FDA, together with the newfangled approval of generic drugs (in 2021 and 2022). This review will also cover the effects of DPP4 inhibitors (i.e., gliptins) on the progression of SARS-CoV-2 infection, showing the role of DPP4 in this disturbing disease.

7.
Mol Biol Rep ; 49(11): 10715-10727, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1906342

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme 2 (ACE2) is known as the major viral entry site for SARS-CoV-2. However, viral tissue tropism and high rate of infectivity do not directly correspond with the level of ACE2 expression in the organs. It may suggest involvement of other receptors or accessory membrane proteins in SARSCoV-2 cell entry. METHODS AND RESULTS: A systematic search was carried out in PubMed/Medline, EMBASE, and Cochrane Library for studies reporting SARS-CoV-2 cell entry. We used a group of the MeSH terms including "cell entry", "surface receptor", "ACE2", and "SARS-CoV-2". We reviewed all selected papers published in English up to end of February 2022. We found several receptors or auxiliary membrane proteins (including CD147, NRP-1, CD26, AGTR2, Band3, KREMEN1, ASGR1, ANP, TMEM30A, CLEC4G, and LDLRAD3) along with ACE2 that facilitate virus entry and transmission. Expression of Band3 protein on the surface of erythrocytes and evidence of binding with S protein of SARS-CoV-2 may explain asymptomatic hypoxemia during COVID19 infection. The variants of SARS-CoV-2 including the B.1.1.7 (Alpha), B.1.617.1 (Kappa), B.1.617.2 (Delta), B.1.617.2+ (Delta+), and B.1.1.529 (Omicron) may have different potency to bond with these receptors. CONCLUSIONS: The high rate of infectivity of SARS-CoV-2 may be due to its ability to enter the host cell through a group of cell surface receptors. These receptors are potential targets to develop novel therapeutic agents for SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Asialoglycoprotein Receptor/metabolism , Protein Binding , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
8.
Clin Immunol ; 230: 108824, 2021 09.
Article in English | MEDLINE | ID: covidwho-1482503

ABSTRACT

The current intersection of the COVID-19 and HIV-1 pandemics, has raised concerns about the risk for poor COVID-19 outcomes particularly in regions like sub-Saharan Africa, disproportionally affected by HIV. DPP4/CD26 has been suggested to be a potential therapeutic target and a biomarker for risk in COVID-19 patients with high risk co-morbidities. We therefore evaluated soluble DPP4 (sDPP4) levels and activity in plasma of 131 HIV-infected and 20 HIV-uninfected South African individuals. Flow cytometry was performed to compare cell surface expression of DPP4/CD26 and activation markers on peripheral blood mononuclear cells of extreme clinical phenotypes. Progressors had lower specific DPP4 activity and lower frequency of CD3+ T-cells expressing CD26 than HIV-1 controllers, but more activated CD3+CD26+ T-cells. The frequency of CD26-expressing T-cells negatively correlated with HLA-DR+ and CD38+ T-cells. Divergent DPP4/CD26 expression between HIV-1 controllers and progressors may have implications for risk and treatment of COVID-19 in people living with HIV.


Subject(s)
COVID-19/complications , Dipeptidyl Peptidase 4/metabolism , HIV Infections/complications , HIV-1 , SARS-CoV-2 , Adult , CD4 Lymphocyte Count , Case-Control Studies , Comorbidity , Cross-Sectional Studies , Disease Susceptibility , Female , Humans , Male , Risk Factors , South Africa , Viral Load , Young Adult
9.
Cureus ; 13(2): e13495, 2021 Feb 22.
Article in English | MEDLINE | ID: covidwho-1156212

ABSTRACT

CD26/Dipeptidyl peptidase IV (DPPIV) is a cell surface glycoprotein with numerous roles including glucose metabolism, immunomodulation, and tumorigenesis. CD26/DPPIV is well recognized in diabetes, with DPPIV inhibitors being a class of oral hypoglycemic drugs called gliptins that are commonly used to treat type two diabetes mellitus. Recent work also indicated a potential role for CD26 in infectious diseases, including COVID-19, and immune-mediated disorders such as rheumatoid arthritis, inflammatory bowel disease, and graft-versus-host disease. In cancer, CD26/DPPIV expression has been characterized in numerous tumors such as hematologic malignancies, malignant pleural mesothelioma (MPM), renal cell carcinoma (RCC), hepatocellular carcinoma (HCC), gastrointestinal stromal tumor (GIST), and prostate, lung, colorectal, and ovarian (PLCO) cancer. Hence, CD26 has been frequently studied as a tumor biomarker and therapeutic target. CD26/DPPIV-targeted therapies have been evaluated in various cancers, including the use of anti-CD26 monoclonal antibodies as anticancer treatment in selected neoplasms. This review highlights our current understanding of the role of CD26 in cancer, diabetes, immune-mediated diseases, and infectious diseases. Enhanced understanding of CD26 biology and function may lead to novel therapeutic approaches in multiple human diseases.

10.
Emerg Microbes Infect ; 9(1): 601-604, 2020.
Article in English | MEDLINE | ID: covidwho-832486

ABSTRACT

The recent outbreak of pneumonia-causing COVID-19 in China is an urgent global public health issue with an increase in mortality and morbidity. Here we report our modelled homo-trimer structure of COVID-19 spike glycoprotein in both closed (ligand-free) and open (ligand-bound) conformation, which is involved in host cell adhesion. We also predict the unique N- and O-linked glycosylation sites of spike glycoprotein that distinguish it from the SARS and underlines shielding and camouflage of COVID-19 from the host the defence system. Furthermore, our study also highlights the key finding that the S1 domain of COVID-19 spike glycoprotein potentially interacts with the human CD26, a key immunoregulatory factor for hijacking and virulence. These findings accentuate the unique features of COVID-19 and assist in the development of new therapeutics.


Subject(s)
Betacoronavirus/metabolism , Dipeptidyl Peptidase 4/chemistry , Polysaccharides/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Betacoronavirus/chemistry , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/virology , Dipeptidyl Peptidase 4/metabolism , Humans , Models, Molecular , Pandemics , Pneumonia, Viral/virology , Polysaccharides/metabolism , Protein Binding , Protein Structure, Quaternary , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
11.
Bioinformation ; 16(5): 398-403, 2020.
Article in English | MEDLINE | ID: covidwho-729741

ABSTRACT

The Severe Acute Respiratory Syndrome Corona Virus2 (SARS-CoV2) is responsible for Corona Virus Disease 2019 (CoViD-19), the pandemic that has afflicted close to two million people worldwide, and has taken the lives of over 120,000 patients since its first report in late December 2019. Per million people globally, the infection rate is close to 250 with a death rate of close to 14 (death rate average global death rate: 6.06%; for comparison, revised estimate of the 1918 influenza pandemic had an average global death rate of 5.4% [1]). About 400,000 SARS-CoV2-positive patients have been declared 'recovered', although it is not clear to date what exactly that entails. To be clear, the natural history of SARS-CoV2 infection and of the patho-physiology of CoViD-19 remains shrouded in relative confusion, in part due to the exceedingly virulent nature of the virus, as manifest by its elevated morbidity and mortality, and the fast accumulation of clinical observations and research evidence. Many pieces of a complex puzzle are emerging all at once and their organization into a coherent and cogent picture of the natural history of CoViD-19 is arduous and still wanting. Here, we discuss the recent findings in the context of the available evidence. We propose a putative prediction model of the natural history of CoViD-19. We highlight putative loci and modes of therapeutic intervention that may become beneficial preventive and treatment modalities for individuals at risk of SARS-CoV2 infection and CoViD-19 patients.

12.
Med Hypotheses ; 143: 110087, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-653172

ABSTRACT

COVID-19 is a major public health issue around the world and new data about its etiological agent, SARS-CoV-2, are urgently necessary, also translating the scientific knowledge acquired on its more similar predecessors, SARS-CoV-1 and MERS-CoV, the coronaviruses responsible for SARS and MERS, respectively. Like SARS-CoV-1, SARS-CoV-2 exploits the ACE2 receptors to enter the host cells; nevertheless, recent bioinformatics insights suggest a potential interaction of SARS-CoV-2 with the «moonlighting protein¼ CD26/DPP4, exactly how MERS-CoV works. CD26/DPP4 is overexpressed on T-helper type 1 (Th1) cells and its expression increases with aging, all factors which could well explain the Th1 immune lockdown, especially in the elderly, during fatal SARS-CoV-2 infections. Facing with this scenario, it is possible that Th1 and T-cytotoxic lymphocytes are the immune cells most affected by SARS-CoV-2, and that the immune system is forced to mount a T-helper type 2 (Th2) response, the only one still mountable, in the attempt to counteract the viral load. However, in this way, the symptomatic patient experiences all the negative effects of the Th2 response, which can seriously aggravate the clinical picture.


Subject(s)
Coronavirus Infections/immunology , Dipeptidyl Peptidase 4/immunology , Pneumonia, Viral/immunology , Th1 Cells/immunology , Adult , Aged , Autopsy , Betacoronavirus , COVID-19 , Computational Biology , Gene Expression Regulation , Humans , Immune System , Italy , Male , Middle Aged , Pandemics , Protein Binding , SARS-CoV-2 , T-Lymphocytes, Cytotoxic/virology , Th1 Cells/virology
13.
Diabetes Metab Res Rev ; 36(8): e3330, 2020 11.
Article in English | MEDLINE | ID: covidwho-116338

ABSTRACT

Dipeptidyl peptidase 4 (DPP4), also known as cluster of differentiation 26 (CD26), is a serine exopeptidase expressed ubiquitously in several tissues, including but not limited to lung, kidney, liver, gut, and immune cells. The question has been raised on whether DPP4 modulation or inhibition may prevent infection and/or progression of the COVID-19. A docked complex model of the SARS-CoV-2 spike glycoprotein and DPP4 has been proposed, showing a large interface between the proteins and proposing close similarity with other coronaviruses using DPP4 as functional receptor. In absence of experimental validation, these data should be interpreted with caution. Nevertheless, this observation may rise the question on whether DPP4 is directly involved in SARS-CoV-2 cell adhesion/virulence, and whether DPP4 inhibition might be a therapeutic strategy for preventing infection. Although a direct involvement of DPP4 in SARS-CoV-2 infection needs to be clarified, there is also evidence suggesting that DPP4 inhibitors modulate inflammation and exert anti-fibrotic activity. These properties may be of potential use for halting progression to the hyperinflammatory state associated with severe COVID-19. Taken together these findings may suggest a potential role for DPP4 inhibition or modulation in one or more steps of COVID-19 immunopathogenesis.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/prevention & control , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/virology , Disease Progression , Humans , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2
14.
J Virol ; 94(5)2020 02 14.
Article in English | MEDLINE | ID: covidwho-2071

ABSTRACT

Continued reports of Middle East respiratory syndrome coronavirus (MERS-CoV) infecting humans have occurred since the identification of this virus in 2012. MERS-CoV is prone to cause endemic disease in the Middle East, with several dozen spillover infections to other continents. It is hypothesized that MERS-CoV originated from bat coronaviruses and that dromedary camels are its natural reservoir. Although gene segments identical to MERS-CoV were sequenced from certain species of bats and one species experimentally shed the virus, it is still unknown whether other bats can transmit the virus. Here, at the molecular level, we found that all purified bat CD26s (bCD26s) from a diverse range of species interact with the receptor binding domain (RBD) of MERS-CoV, with equilibrium dissociation constant values ranging from several to hundreds at the micromolar level. Moreover, all bCD26s expressed in this study mediated the entry of pseudotyped MERS-CoV to receptor-expressing cells, indicating the broad potential engagement of bCD26s as MERS-CoV receptors. Further structural analysis indicated that in the bat receptor, compared to the human receptor, substitutions of key residues and their adjacent amino acids leads to decreased binding affinity to the MERS-RBD. These results add more evidence to the existing belief that bats are the original source of MERS-CoV and suggest that bCD26s in many species can mediate the entry of the virus, which has significant implications for the surveillance and control of MERS-CoV infection.IMPORTANCE In this study, we found that bat CD26s (bCD26s) from different species exhibit large diversities, especially in the region responsible for binding to the receptor binding domain (RBD) of Middle East respiratory syndrome coronavirus (MERS-CoV). However, they maintain the interaction with MERS-RBD at varied affinities and support the entry of pseudotyped MERS-CoV. These bat receptors polymorphisms seem to confer evolutionary pressure for the adaptation of CD26-binding virus, such as the ancestor of MERS-CoV, and led to the generation of diversified CD26-engaging CoV strains. Thus, our data add more evidence to support that bats are the reservoir of MERS-CoV and similar viruses, as well as further emphasize the necessity to survey MERS-CoV and other CoVs among bats.


Subject(s)
Dipeptidyl Peptidase 4 , Middle East Respiratory Syndrome Coronavirus , Virus Attachment , Animals , Cell Line , Chiroptera , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Humans , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/metabolism , Protein Domains , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL